

Algebraic Expressions Part 2

Identical polynomials

Two polynomials are identical if their coefficients corresponding to like monomials (of the same degree) are equal.

Example:

The polynomials $P(x) = \frac{1}{2}x(2x - 4)$ and $Q(x) = x^2 - 2x$ are identical since:

$$P(x) = \frac{1}{2}x(2x - 4) = \left(\frac{1}{2}x\right)(2x) - \left(\frac{1}{2}x\right)(4) = x^2 - 2x = Q(x)$$

Polynomials identical to zero

A polynomial is identical to zero if all the coefficients are equal to zero.

Example:

The polynomial $P(x) = x(x-3) + x^2 - 2x(x+1) + 5x$ is identical to zero since:

$$P(x) = x(x-3) + x^2 - 2x(x+1) + 5x$$
 By expanding
= $x^2 - 3x + x^2 - 2x^2 - 2x + 5x$ (developing)
= $0x^2 + 0x = 0$ the factors

Consider the polynomial
$$P(x) = (2a - 1)x^2 + (3 - b)x + \frac{1}{2}(2 - 5c)$$
.

Determine a, b and c so that:

- 1) P(x) is identical to zero.
- 2) P(x) is identical to Q(x) = 3x 1

1)
$$P(x) = 0$$
 so,
 $2a - 1 = 0$ and $3 - b = 0$ and $\frac{1}{2}(2 - 5c) = 0$
 $2a = 1$ $-b = -3$ $2 - 5c = 0$
 $a = \frac{1}{2}$ $b = 3$ $-5c = -2$
 $c = \frac{-2}{-5}$
 $c = \frac{2}{-5}$

Consider the polynomial
$$P(x) = (2a - 1)x^2 + (3 - b)x + \frac{1}{2}(2 - 5c)$$
.

Determine a, b and c so that:

- 1) P(x) is identical to zero.
- 2) P(x) is identical to $Q(x) = 3x 1 + 0x^2$

2)
$$P(x) = Q(x)$$
 so,
 $2a - 1 = 0$ and $3 - b = 3$ and $\frac{1}{2}(2 - 5c) = -1$
 $2a = 1$ $-b = 3 - 3$ $2 - 5c = -2$
 $a = \frac{1}{2}$ $-b = 0$ $-5c = -2$
 $b = 0$ $-5c = -4$
 $c = \frac{-4}{5} = \frac{4}{5}$

Numerical value of a polynomial

Each time we give a value for x, we can calculate the corresponding value of the polynomial P(x).

Example:

Consider the polynomial $P(x) = 6x^3 - 9x^2 + 3x + 1$

For
$$x = 1$$
; $P(1) = 6(1)^3 - 9(1)^2 + 3(1) + 1 = 1$

For
$$x = -2$$
; $P(-2) = 6(-2)^3 - 9(-2)^2 + 3(-2) + 1 = -89$

Root of a polynomial

A root a (or zero or solution) of a value which makes the polynomial zero. We write P(a) = 0

Example:

Consider the polynomial $P(x) = 3x^2 + 4x - 7$

1 is a root of P(x) since $P(1) = 3(1)^2 + 4(1) - 7 = 0$

$$-\frac{7}{3}$$
 is a root of $P(x)$ since $P\left(-\frac{7}{3}\right) = 3\left(-\frac{7}{3}\right)^2 + 4\left(-\frac{7}{3}\right) - 7 = 0$

-1 is not a root of P(x) since $P(-1) = 3(-1)^2 + 4(-1) - 7 = -8 \neq 0$

Consider the polynomial $P(x) = 2x^2 - 7x + 5$

- 1) Calculate the value of P(x) for x = -1.
- 2) Show that $\frac{5}{2}$ is a root of P(x).

1)
$$P(-1) = 2(-1)^2 - 7(-1) + 5 = 2 + 7 + 5 = 14$$

2)
$$P\left(\frac{5}{2}\right) = 2\left(\frac{5}{2}\right)^2 - 7\left(\frac{5}{2}\right) + 5 = \frac{25}{2} - \frac{35}{2} + 5 = 0$$
 so $\frac{5}{2}$ is a root of $P(x)$.

Consider the polynomial $P(x) = ax^2 + (a-1)x + 1$. Determine the value of a so that 2 is a root of P(x).

2 is a root of P(x)
So,
$$P(2) = 0$$

 $a(2)^2 + (a - 1)(2) + 1 = 0$
 $4a + 2a - 2 + 1 = 0$
 $6a - 1 = 0$
 $6a = 1$
 $a = \frac{1}{6}$

Calculate the roots of the following polynomials:

1)
$$P(x) = 2x + 3$$

2)
$$P(x) = 4 - 2x$$

3)
$$P(x) = x(2x + 5)$$

Recall that:
If
$$a \times b = 0$$
, then $a = 0$ or $b = 0$

1)
$$P(x) = 0$$
$$2x + 3 = 0$$
$$2x = -3$$
$$x = -\frac{3}{2}$$

2)
$$P(x) = 0$$
$$4 - 2x = 0$$
$$-2x = -4$$
$$x = \frac{-4}{-2}$$
$$x = 2$$

3)
$$x(2x + 5) = 0$$

 $x = 0$ or $2x + 5 = 0$
 $2x = -5$
 $x = -\frac{5}{2}$

Time for practice

Consider the polynomials $P(x) = 2x^3 - 4x^2 + x + 1$ and $Q(x) = (a^2 + 1)x^2 + 2ax + 4a - 4$.

- 1) Calculate P(-2).
- 2) Is 1 a root of P(x)? Justify.
- 3) Find the value of a so that:
 - a) Q(x) is identical to zero.
 - b) 0 is a root of Q(x).
- 1) P(-2) = -33
- 2) Yes, since P(1) = 0
- 3) a) a doesn't exist.

b)
$$a = 1$$

